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Abstract—In this paper a tutorial of optical injection locking of
semiconductor lasers is given, with particular emphasis on the en-
hancement of system parameters. Furthermore, physical intuition
of each parameter enhancement is explained and practical design
rules and trends are also shown.

Index Terms—Injection locking, modulation frequency re-
sponse, semiconductor lasers.

I. INTRODUCTION

THE DIRECTLY modulated semiconductor laser has ap-
peared in many optical applications due to its availabil-

ity and low cost. It has seen use from its origin as integrated
modulator and source for telecommunication applications to
economical transmitters for metro-level data communications.
While there is much exciting research in developing high-speed
direct-modulated lasers [1], [2], many fundamental limitations
of other system parameters still exist. Optical injection lock-
ing (OIL) of semiconductor lasers has provided many improve-
ments over these parameters, making direct-modulated lasers a
much more attractive choice as transmitters. Table I lists many
of these fundamental limits and how OIL has been shown to
improve their characteristics [3]–[17]. While many of these en-
hancements are of great interest to communications, they can
also be used for improving system performance of various ap-
plications, from microwave frequency generation [18], [19] to
high linearity RF photonics sources [20] to all-optical signal
processing [21]. However, the system dynamics of OIL lasers
have traditionally been rich and complex, making it difficult
for the nonexpert to determine correct laser design and locking
conditions that will optimize their system.

In this paper, we attempt to explore the physical origin of
many of the laser characteristics enhanced by OIL. In addition,
we derive analytical formulas and design trends to provide a
means for the optical engineer to optimize the OIL system for
their particular application.

Fig. 1 shows a general schematic of a direct-modulated,
direct-detection injection-locked laser system. The basic ob-
jective is to inject light from the master laser into the slave laser.

Manuscript received November 15, 2008; revised December 19, 2008 and
January 13, 2009. First published April 21, 2009; current version published June
5, 2009.

E. K. Lau and M. C. Wu are with the Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley, CA 94720-1774
USA (e-mail: elau@eecs.berkeley.edu; wu@eecs.berkeley.edu).

L. J. Wong is with the RF and Optical Department, Institute for Infocomm
Research, Singapore 138632, Singapore (e-mail: liangjie@berkeley.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTQE.2009.2014779

TABLE I
A LIST OF FUNDAMENTAL LIMITATIONS OF DIRECT-MODULATED LASERS AND

THE IMPROVEMENT FROM OIL

Fig. 1. Schematic of optical injection-locked laser system. (a) Transmission
style. (b) Reflection style. PC: polarization controller.

An isolator is used to eliminate light coupling back to the mas-
ter. There are two possible configurations of injection locking.
In transmission-style injection locking [Fig. 1(a)], the injected
master light enters one slave laser facet and the output is taken
from the other facet. This necessitates two coupling systems
on the slave laser. Oftentimes, for example, with vertical-cavity
surface-emitting lasers (VCSELs), a reflection-style setup is
used [Fig. 1(b)]. The output is taken at the same facet as the input
of the injected light. An optical circulator is used to ensure that
only the output beam goes to the photodetector. The reflection-
style output is susceptible to reflected master light combining
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with the slave laser facet output. This is important only in the
strong injection regime and can be reduced by applying varying
degrees of antireflection coating to the slave facet (while still
maintaining a suitable threshold value). In either system, al-
though polarization maintaining components are not necessary,
a polarization controller is used to match the overlap of master
and slave polarizations. Direct modulation is typically applied
to the slave laser. A recently developed alternative is to use a ring
laser as the slave [22], [23]. Injection via the master laser has
been shown to suppress the reverse lasing direction, thus effec-
tively suppressing back reflections and eliminating the need for
an isolator, allowing the realization of integrated OIL systems.

Aside from typical parameters applied to a direct-modulated
free-running laser, the OIL system has two primary parameters:
the ratio of injected power from the master laser to the output
power of the free-running slave, or injection ratio, and the dif-
ference between master and slave solitary lasing frequencies, or
detuning frequency.

The process of injection locking is as follows. Light from
the master is injected into the slave, not necessarily at the same
wavelength. The master laser coherently combines with the slave
light, causing a change in the slave laser’s internal field, which
deviates from its free-running value. Finally, when the dynamics
of the laser settle, the slave wavelength is “pulled” toward the
master wavelength until it equals that of the master, locking both
its frequency and phase. Now, if the master laser frequency is
changed, the slave will track this frequency until the frequency
deviation from free running (detuning frequency ∆ωinj) be-
comes too large. At this point, the slave unlocks from the master
and lases at its natural cavity wavelength. The span of frequen-
cies that result in a locked state is the locking range. The locking
range typically becomes larger as the ratio of master and slave
optical powers defined as the injection ratio Rinj increases. Once
locked, although the frequencies are the same, the relative phase
between the slave and master (φ) can be nonzero, though its
value depends on the detuning frequency and the injection ratio.

II. HISTORY

Perhaps the first recorded observation of injection locking
was by Christiaan Huygens (1629–1695) [24], who noted that
the pendulums on two clocks mounted on the same wall would
eventually lock frequencies. A form of coupled oscillation, he
reasoned that the pendulums would mechanically lock to one
another by sending minute vibrations through the wall. The
first published works of coupled oscillators emerged around
1920 in electrical systems. The earlier works characterized the
synchronization of vacuum tube circuits as FM demodulators
during the beginning of radio communications [25], [26]. It was
during this era, in 1946, when Adler worked out the seminal
differential equation that described the fundamental dynamics
of electrical injection locking [27].

With the demonstration of the first laser oscillator in 1960
[28], injection locking was naturally translated to optical fre-
quencies. The first OIL experiment, in 1966, used two HeNe
lasers [29]. As new laser gain mediums were developed, injec-
tion locking of the medium usually followed a few years later,

as in CO2 lasers in 1972 [30] and, importantly for this work,
semiconductor lasers in 1980 [31].

Much of the same theory and techniques of injection-locked
electronic oscillators were applied to lasers. For example, sev-
eral authors expanded Adler’s equations to describe lasers [32]–[
34], although it was in 1982 when Lang published the widely
accepted standard OIL rate equations by taking in to account the
linewidth enhancement parameter [35]. Additionally, with the
advent of semiconductor lasers and low-loss optical fiber in the
1970s, coherent optical detection techniques were developed. As
it did for electronics, injection locking provided a method for
locking the local oscillator in coherent detection systems [36].

The 1980s saw rapid development of new phenomenon and
applications for OIL systems. In 1982, Kobayashi and Kimura
demonstrated optical phase modulation by direct modulation
of the slave laser current [37]. The same authors developed
FM with suppressed AM [38], which was later used by Kas-
api et al. as a sub-shot-noise FM spectroscopy technique [39].
Pioneering work on hybrid optical/electrical injection-locked
subsystems [40]–[42] also led to effective phase locking and
modulation of phased array antennas [43]. Efficient optical mi-
crowave signal generation was developed by Goldberg, using
sideband injection locking [19], [44]. Applications include dis-
tribution of microwave references, frequency multiplexing, and
locking of microwave oscillators.

Coherent optical communications would eventually be
eclipsed by the advent of the Erbium-doped fiber amplifier in the
late 80s, making extremely long-haul direct-detection fiber links
possible. In the field of direct detection, OIL has demonstrated
several performance enhancements for both digital and ana-
log optical communications. Reduction of chirp-induced disper-
sion of direct-modulated semiconductor lasers was first shown
in 1984 [13]. Several groups [14], [15], [45] in the mid-80s
demonstrated record bit rate-distance (B–L) products, push-
ing the limits of long-haul optical communications. Reduction
of nonlinear distortions was demonstrated by Meng et al. [7]
and Chrostowski et al. [8]. Reduction of relative intensity noise
(RIN) and linewidth had been shown by several groups, both ex-
perimentally and theoretically [8]– [12], [46]–[48]. Additional
enhancements are increased RF link gain [16] and near-single
sideband modulation [17]. Finally, the enhancement of reso-
nance frequency was proposed [4], [6] as a method for increasing
modulation bandwidth for both analog and digital communica-
tions. The first RF spectra of resonance frequency enhancement
was demonstrated in 1998 [49].

One of the main attractions of injection locking is that most or
all of these enhancements are realized simultaneously. For ex-
ample, simultaneous reduction in RIN and third-order intermod-
ulation distortion with enhanced resonance frequency has been
shown in our group, using injection-locked distributed Bragg
reflector lasers [16], [50], and subsequently in VCSELs [20].
The resultant spurious-free dynamic range improvement was
5 dB and 20 dB, respectively. Although it was not measured
at the time, chirp reduction could also be obtained at the same
bias conditions. So, understanding the general mechanisms
behind each effect allows us to optimize laser design as well as
injection locking parameters to best suit the application on hand.
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Although OIL has had a long history, the past decade has
brought new and exciting advances. With the advent of eco-
nomical, high-power semiconductor lasers, injection ratios of
>0 dB can be realized. This strong OIL regime, for example, has
allowed us to demonstrate greater than 100-GHz resonance fre-
quencies and 80-GHz intrinsic 3-dB bandwidths [51]. Extrinsic
bandwidths are, of course, limited by RC parasitics. However, by
using the techniques discussed in Section IV-B, extrinsic 3-dB
bandwidths of 44 GHz in distributed feedbacks (DFBs) [52] and
43.4 GHz in VCSELs [53] (49 GHz using double-polarization
mode locking [54]) have been shown.

III. BASIC CONCEPTS

The foundations of all the analyses in this paper are the stan-
dard OIL rate equations [4], [5], [35], [55]:

dS(t)
dt

={g[N(t) − Ntr ] − γP }S(t)

+ 2κ
√

SinjS(t) cos[φ(t) − φinj ] (1)

dφ(t)
dt

=
α

2
{g[N(t) − Ntr ] − γP }

− κ

√
Sinj

S(t)
sin[φ(t) − φinj ] − ∆ωinj (2)

dN(t)
dt

= J(t) − γN N(t) − g[N(t) − Ntr ] S(t) (3)

where S(t), φ(t), and N (t) are the slave laser’s photon num-
ber, field phase, and carrier number. φ(t) is the phase differ-
ence between slave and master: φ(t) ≡ φslave(t) − φmaster . g,
Ntr , α, J , γN , and γP are the slave laser’s linear gain co-
efficient, transparency carrier number, linewidth enhancement
factor, current, carrier recombination rate, and photon decay
rate, respectively. Gain compression, which primarily enhances
the damping factor, is not modeled here. Since the damping
factor can be modified by the locking conditions (see Sec-
tion IV-B), gain compression becomes a secondary effect, so
is neglected in this analysis for clarity. The injection terms κ,
Sinj , and ∆ωinj are the coupling rate, injected photon num-
ber, and detuning frequency, respectively. The detuning fre-
quency is formally defined as the difference between the master
laser frequency ωML and the free-running slave laser frequency
ωfr : ∆ωinj ≡ ωML − ωfr . As injection ratio is more subtle, we
describe it in Section III-C. In this work, we treat the injected
photon number and phase as constants. In the general case, when
they are allowed to change, this describes master amplitude and
phase modulation and its application and analysis are discussed
in [56].

The laser parameters used in this paper are listed in Table II,
unless otherwise noted. Although length L and reflectivity r can
be drastically different from laser to laser, we show in Section
III-C that coupling-Q is a more important figure-of-merit. The
linewidth enhancement factor α can vary greatly for different
laser designs. For example, α has been measured as small as 0.1
or as large as 10 in quantum dot lasers [57], [58].

TABLE II
INJECTION-LOCKED LASER PARAMETERS

A. Steady-State Solutions

Observing the trends of the steady-state solutions of (1)–(3)
can give us insight into the enhanced dynamics to be studied.
Here, we generally follow the solutions by Murakami et al.
for the steady-state photon number, phase, and carrier number,
defined here as S0 , φ0 , and N0 , respectively [5]. Solving for the
free-running photon number Sfr in (3), we can set the above-
threshold carrier number ∆N0 ≡ N0 − Nth to zero, obtaining:

Sfr =
J − γN Nth

γP
, (4)

where the threshold carrier number is Nth ≡ Ntr + γP /g. Us-
ing (4) and solving for the steady-state values of the injection-
locked laser, we obtain:

S0 =
Sfr − (γN /γP )∆N0

1 + (g∆N0/γP )
(5)

φ0 = sin−1

{
− ∆ωinj

κ
√

1 + α2

√
S0

Sinj

}
− tan−1 α (6)

∆N0 = −2κ

g

√
Sinj

S0
cos φ0 . (7)

The mostconvenient solution is to choose an injection pho-
ton number Sinj and phase value φ0 and knowing that the
bounds of the phase across the locking range are approximately
cot−1α to − π/2, from the negative to positive frequency de-
tuning edges, respectively [48]. By choosing a φ0 at which
to solve the steady-state solutions, substituting (7) into (5),
and defining a slave internal field strength A0 , normalized as
A2

0 ≡ S0 , yields a cubic equation

0 = S
3/2
0 −

[
2κ

γP
S

1/2
inj cos φ0

]
S0 − SfrS

1/2
0

− γN

γP

2κ

g
S

1/2
inj cos φ0 (8)

whose roots S
1/2
0 can be easily solved by a numerical root-

solving program. Then, (7) solves for ∆N0 , and we rearrange
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TABLE III
STEADY-STATE LOCKING CONDITIONS AT SELECT VALUES IN THE LOCKING

RANGE

Fig. 2. Graphical representation of select detuning frequency values across
the locking range. ωM L : master laser frequency, ωfr : free-running slave laser
frequency, and ωcav : cavity mode frequency.

(6) to determine the detuning frequency ∆ωinj:

∆ωinj = −κ
√

1 + α2

√
Sinj

S0
sin

(
φ0 + tan−1 α

)
. (9)

It is useful to gain some insight to the locking phenomenon
by analyzing specific analytical cases in the locking range. The
shift in the cavity mode from the free-running frequency ∆ωcav
is given by ∆ωcav = αg∆N/2, and the resonance frequency
enhancement ∆ωR , as will be shown in Section IV-A, is the
difference between master and cavity mode frequencies, given
by ∆ωR = |∆ωinj − ∆ωcav |. Table III shows the position of
the cavity mode and resonance frequency for specific detuning
values. These are shown graphically in Fig. 2. Note that the
maximum photon number for a given detuning frequency occurs
for φ0 = 0, when the cavity mode overlaps with the locked
frequency. In other words, the master is in resonance with the
slave laser’s cavity and adds fully in-phase with the slave light.

The steady-state values for the laser parameters in Table II are
numerically simulated across the locking map in Fig. 3. Several
qualitative trends can be noted. The photon number generally

increases with an increase in injection power and/or negative de-
tuning. The latter trend is primarily due to the nonzero α factor.
This redshifts the cavity mode, necessitating a negative detun-
ing to align the master and cavity mode frequencies. Should
the α factor become 0, the cavity mode stays fixed at the free-
running frequency, creating a symmetric locking map whose
peak photon number will lie at a detuning frequency of 0 GHz.
Additionally, Fig. 3(a) and (b) tells us that the photon num-
ber and carrier number will be close to the free-running value
near the positive locking edge. Negative detuning will cause the
carrier number to drop. Note that although the carrier number
is below threshold, extra photon energy that was lost through
output coupling or intrinsic loss is replenished by the injected
master light. Hence, when locked, the slave laser continues to
satisfy the gain = loss condition required for lasing.

B. Phasor Diagram

We can combine the photon and phase rate equations into a
singular complex field rate equation:

dE(t)
dt

=
1
2
g∆NE(t) + κAinj − j∆ωE(t) (10)

where we have included the shift of the cavity mode with the
frequency detuning term:

∆ω ≡ ωML − ωcav = −α

2
g (N0 − Nth) + ∆ωinj. (11)

It is possible to explain the dynamics of injection locking via a
phasor diagram. Henry et al. developed a phasor diagram model
for injection-locked lasers that shows the effects of injected light
on the slave field [4]. Another phasor diagram for electrical LC
circuits can be found in [59]. In Fig. 4, we introduce a modified
phasor diagram that shows the dynamics to achieve a steady-
state injection-locked system. The phasor is in the frame-of-
reference of the master laser frequency. Therefore, if the slave
were lasing at the master laser frequency, the phasor would be
static and would not rotate with time. To be locked, we desire
the dynamic phasor vectors to sum to zero, resulting in a slave
laser that is locked to the master. The angle of the phasor is
the phase between master and slave, φ(t). However, the slave,
even when locked, will lase at a frequency ∆ω away from the
master, and therefore will rotate ∆ω∆t in a time interval, ∆t, as
shown in the last term in (10) and in vector 1 of Fig. 4. Since the
injected master laser light has a phase equal to 0 in this frame-
of-reference, the injected term is represented as a real vector, as
shown in the second term on the right-hand side of (10) and in
vector 2. Finally, the gain must reduce to lower the amplitude
so that the slave field will return to steady state, shown in the
first term of the right-hand side of (10) and vector 3.

This clearly shows that, despite being injection locked, the
slave continues to emit photons at its cavity mode frequency. The
injected master light serves to continually shift the phase of the
slave so that it appears to lase at the frequency of the master. The
phase-shifted cavity mode light then creates stimulated emission
that is coherent to the new phase (but still at the cavity mode
frequency), thereby sustaining the phase-shifting process. For
example, this allows OIL DFB lasers to be locked in the middle
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Fig. 3. Locking map for various injection locking states, showing steady state (a) photon number, (b) carrier number, and (c) phase. Dynamic values are also
plotted, showing (d) resonance frequency, (e) damping factor, and (f) the first-order pole frequency. n.s.: unstable portion of the locking range.

Fig. 4. Phasor model for injection locking, showing phasor perturbation in
a time interval, ∆t. Vector 1 corresponds to the free-running slave angular
rotation, with respect to the frame-of-reference of the master laser frequency.
Vector 2 is the vector addition of the injected master light at phase φ. Vector 3
is the reduction in amplitude due to the reduced gain.

of their stop band [51]. The injection-locked laser is very similar
to a phase-locked loop, where a steady-state condition is only
reached when the coherent addition of master and slave fields
matches frequency with the master light. Finally, we see in
Fig. 3(c) that the phase decreases, approaching −π/2, as the
detuning is increased. Before it reaches this value, however,
the OIL laser enters into an unstable locking condition, labeled
“n.s.”. This is further discussed in Section III-E.

C. Injection Ratio and Coupling Rate

Although the analysis calls for a specification for the injection
photon number Sinj , what actually is known is the injection

power. The empirically measurable external power injection
ratio is defined as the injected master power just before it is
incident upon the slave’s facet Pinj divided by the free-running
slave power as it leaves the facet Pfr or

Rinj ≡
Pinj

Pfr
. (12)

It is important to note that this definition only includes the
field that couples to the slave’s lasing mode; hence, coupling
efficiency via polarization and mode matching are important. To
relate the power ratio to the photon ratio just outside the facet,
we can integrate the volume over the transverse mode area and
a thin thickness projecting from the facet. Hence, the external
power injection ratio is equivalent to the external photon ratio
just outside the facet. To relate the external photon ratio outside
the facet to the internal photon ratio in the cavity, the mirror
reflectivity is used. The rate at which the injected photons enter
into the cavity and distribute themselves along the cavity length
L is defined as the coupling rate κ. An approximation for κ
can be made by absorbing the internal/external injection ratio
defined in [60] into its definition:

κ =
vg

2L

1 − r√
r

=
ω0

2Qc
(13)

where Qc is the coupling cavity quality factor (from mirror
loss only) and r is the power reflectivity of the cavity mirrors.
Hence, κ can be approximated as half the cold, lossless cavity
bandwidth. Using this definition of κ allows us to define Sinj
relative to the external free-running slave photon number and
hence the power injection ratio. In other words, if an external
power injection ratio of 3 dB is desired, we set Sinj = 2Sfr . Qc is
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typically in the 1000s, so κ = 2π × 36 GHz (for Qc = 2700).
The coupling-Q, and therefore the coupling rate, is generally
similar for different laser designs, from VCSELs to DFB lasers
[60].

Note that this approximation holds for reflection-OIL lasers
with linear cavities. Equation (13) would also hold for
transmission-OIL lasers with equal facet reflectivities. Note
also that the performance of the injection-locked system is
more a function of the injection ratio, rather than the actual
injection power. The external injection ratio can be defined as
Rinj ≡ Sinj/Sfr , which is equivalent to (12). It is important to
realize that this is not equivalent to the ratio Sinj/S0 , since the
internal slave photon number rises above the free-running value
as the laser is tuned to negative detuning frequencies.

D. Small-Signal Solutions

Although the injection locking rate equations are nonlinear
coupled rate equations, much insight can be gleaned by ana-
lyzing them by a small-signal analysis. The linearized form of
(1)–(3) can be placed in matrix form:


mSS + jω mSφ mSN

mφS mφφ + jω mφN

mNS 0 mNN + jω







∆S

∆φ

∆N


 =




0

0

∆J




(14)
where the matrix terms are

mSS = z cos φ0

mSφ = 2zS0 sinφ0

mSN = −gS0

mφS = −z sinφ0/2S0

mφφ = z cos φ0

mφN = −1
2
αg

mNS = γP − 2z cos φ0

mNN = γN + gS0 (15)

where z ≡ κ
√

Sinj/S0 can be interpreted as the injection rate.
Note that since S0 changes over the locking range, as shown in
Fig. 3(a), z also changes. For example, z decreases by up to a
factor of 2 from the positive to the negative edge of the detuning
range, for Rinj = 5 dB.

The magnitude of the direct modulation frequency response
is then

∆S

∆J
≡ H(ω) = M

jω + Z

(jω)3 + A (jω)2 + B (jω) + C
(16)

where

A = mSS + mφφ + mNN

B = mSS mφφ + mSS mNN + mφφmNN

− mSφmφS − mSN mNS

C = mSS mφφmNN + mSφmφN mNS

− mSφmφS mNN − mSN mNS mφφ

Fig. 5. Frequency response (|H |2 ) curves for various detuning frequencies
(labeled in GHz), at Rin j = 4 dB. The dotted curve is the free-running response.

Z = (mSφmφN − mSN mφφ) /mSN

M = −mSN . (17)

Therefore, the frequency response can be easily determined
by (16) and its auxiliary equations. The greater part of the direct
modulation frequency response shape can be determined simply
by analyzing the poles of the response function shown in (16).
The zero frequency is typically much larger than any of the pole
frequencies, so it can be treated as a constant. So, the frequency
response can also be factored into its corresponding poles:

H(ω) ≈ ZM

(jω + ωP )
(
jω − jωR + 1

2 γ
) (

jω + jωR + 1
2 γ

) .

(18)
Note that there will be two complex conjugate poles that will

determine the resonance frequency ωR and damping−γ, similar
to a free-running laser. The resonance frequency and damping
will be discussed in Sections IV-A and IV-B, respectively. In
addition, there will be a first-order real pole −ωP that will de-
termine a low-pass filter response that factors greatly into the
3-dB bandwidth of the response. This will be discussed in-depth
in Section IV-C. Before exploring analytical approximations to
the OIL dynamics, a numerical look at these three dynamic
parameters can give us a general optimization guideline of the
frequency response. Fig. 3(d)–(f) plots the resonance frequency,
damping, and first-order pole across the locking map. In general,
the resonance frequency increases with injection ratio and de-
tuning frequency. On the contrary, the damping factor increases
with injection ratio but reduces with detuning frequency. Finally,
the first-order pole increases with negative detuning. As an ex-
ample, Fig. 5 plots the frequency response curves for various
detuning frequencies, at a fixed injection ratio of Rinj = 4 dB.
The trends just described are graphically shown in this figure.

E. Locking Range

The locking range is the range of detuning frequencies that
satisfy conditions of stable locking and had been well stud-
ied in [48]. The first requirement for stable locking is deter-
mined by solving (6) for all valid values of φ0 , which must lie
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between cot−1α to − π/2. The detuning frequencies that this
corresponds to are

−z
√

1 + α2 < ∆ωinj < z. (19)

Note that z is proportional to the cavity bandwidth via (13). As
will be shown in Section IV-A, the locking range on the positive
detuning side determines the maximum resonance frequency
enhancement. Note also that the locking range boundaries in
(19) are approximately proportional to the square root of the
injection ratio:

√
Sinj/S0 . As is shown in Fig. 3(a), S0 ≈ Sfr at

the positive edge of the locking range. However, on the nega-
tive side, S0 can be much larger that Sfr in the strong injection
regime [see Fig. 3(a)], thus reducing frequency of the nega-
tive detuning edge. The second requirement for stable locking
is that of stability; i.e., the poles must lie within the region of
convergence (left-hand side of s-plane) and is usually solved nu-
merically. This requires that the damping factor −γ must be <0.
This condition shrinks the locking range on the positive detun-
ing side, when the resonance frequency damping goes to 0. This
unstable region is labeled “n.s.” in Fig. 3 and corresponds to
the chaotic locking regime studied by several authors [61]–[63].
Although having significant impact at low to moderate injection
ratios, this unstable region shrinks with stronger injection power
and higher bias current to the degree that the chaotic regime no
longer shows up in the experiment. Although the linewidth en-
hancement parameter increases the negative edge of the locking
regime, it does not have an effect on the positive edge but does
expand the unstable region to a greater fraction of the detuning
range.

IV. IMPROVED SYSTEM CHARACTERISTICS

In this section, we look at several system characteristics that
can be enhanced by OIL. Here, we attempt to provide intuition
to the physics behind each enhancement and delineate simple
design guidelines that can be used to optimize the OIL system.
The major system characteristics discussed here are resonance
frequency enhancement, damping evolution, 3-dB small-signal
bandwidth enhancement, chirp reduction, RIN reduction, and
low-frequency RF gain.

A. Resonance Frequency Enhancement

One of the most powerful features of strong OIL is the ability
to enhance the frequency of the slave laser’s relaxation oscil-
lation or resonance. Although this has been studied for almost
a decade [4], [6], [64], only recently have we shown dramatic
increases in the enhancement beyond 100 GHz by using strong
injection powers [51].

We can approximate the resonance frequency as [55]

ω2
R ≈ −mSN mNS − mSφmφS . (20)

The first term mSN mNS is the resonance attributed to the
dynamic coupling of the photons and carriers and approximates
to the same physical origin of the relaxation oscillation of a free-
running laser:−mSN mNS ≈ ω2

R0 , where ω2
R0 = gγP Sfr . Using

(15) to expand (20), the resonance frequency approximates to:

ω2
R ≈ ω2

R0 + ∆ω2
R (21)

where the resonance frequency enhancement term ∆ωR is de-
fined as the second term in (20):

∆ωR ≡
√

−mSφmφS =

∣∣∣∣∣κ
√

Sinj

S0
sin φ0

∣∣∣∣∣ . (22)

From this, we found that the enhancement is proportional to
the root of the injection power. Physically, the enhancement is
attributed to the coupling of photons and phase. For example,
if the master and slave initially start with a steady-state phase
difference of φ0 = 0, the master and slave fields add coherently.
If the phase is perturbed, the two fields add somewhat destruc-
tively and the effective photon amplitude decreases. This, in
turn, causes the phase to readjust and the process repeats. Solv-
ing the steady-state condition of (2) and applying this to (22)
yields

∆ωR =
∣∣∣−α

2
g (N0 − Nth) + ∆ωinj

∣∣∣ . (23)

As described by Murakami et al. [5], the resonance frequency
enhancement is equal to the difference between the master laser
frequency and that of the slave laser’s natural cavity mode fre-
quency. This cavity mode is redshifted by α via the first term in
(23). Hence, for increasingly negative detuning frequencies, the
master laser frequency approaches the cavity mode (see Fig. 2)
and the resonance frequency enhancement decreases, as shown
in Fig. 3(d). However, for positive detunings, the master moves
in the opposite direction of the cavity mode migration, creating
larger resonance frequency enhancements, with the larger en-
hancement occurring at the positive edge of the locking range.
For low injection ratios, (21) reduces to the original free-running
resonance frequency, which matches the experiment. When the
enhancement is much larger than the free-running resonance
frequency, the total resonance frequency approximates to the
enhancement term, ∆ωR . This enhancement can be over one or-
der of magnitude greater than the free-running slave resonance
frequency. As we see from (21), at very high enhancements, it is
virtually irrelevant what the original free-running resonance is.
Resonance enhancements from 3 GHz to >100 GHz have been
demonstrated, limited only by the detection system [51]. The
maximum enhancement is limited by the maximum stable fre-
quency of the positive detuning edge. It scales with the square
root of the injection ratio and is inversely proportional to the
coupling-Q of the slave laser [60]:

∆ωR,max ≈ ω0

2Qc

√
Rinj. (24)

Of course, another practical limitation to the enhancement is
the slave laser’s Fabry–Perot mode spacing. If the master laser
detunes far enough away from the primary mode such that it
approaches the frequency of an adjacent slave mode, it will lock
to the adjacent mode. Hence, a larger mode spacing laser is
desired for maximum resonance frequency enhancement. For a
Fabry–Perot laser, this may only be 100 GHz, whereas a DFB
could be >200 GHz and a VCSEL even larger.
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B. Damping Factor

As in free-running lasers, the damping factor affects the peak
amplitude of the resonance (see Fig. 5). As shown in Fig. 3(e),
the damping factor also evolves with the locking parameters.
It is important to understand these trends for optimization of
the OIL laser to different applications. For example, a highly
damped resonance is useful to eliminate relaxation oscillation
ringing for digital modulation. On the other hand, a large peak
value would be useful for narrow-band, high-gain applications,
such as optoelectronic oscillators [65], [66].

The approximate damping factor for large damping values
is [55]

γ ≈ γ0 − g (N0 − Nth) (25)

where γ0 = γN + gS0 is the free-running damping term. The
injection-locked laser’s damping is the free-running damping
enhanced by the reduction of gain below threshold. As the mas-
ter laser field coherently adds photons to the slave cavity, the
gain is reduced in order to maintain a steady state. This reduction
in gain below threshold increases the damping of the resonance.

For small damping values, which occur near the positive edge
of the detuning range [see Fig. 3(e)], the approximations used
to derive (25) no longer hold and a modified damping term must
be used:

γM

(
φ ≈ −π

2

)
≈ −g∆N − κgS0

ω2
R

√
Rinj

(
αγP + κ

√
Rinj

)
.

(26)
Hence, the carrier number must be sufficiently below thresh-

old for the damping term to be positive and the solution to
remain in the region of convergence. This causes the stable
locking range to shrink, accounting for the boundary between
stable locking and the chaotic locking regimes.

As an example, Fig. 6 shows experimental verification of
the resonance frequency enhancement and damping factor re-
duction across the locking range [51]. In this experiment, the
resonance frequency enhancement was limited only by the max-
imum network analyzer frequency of 110 GHz. The sharpening
of the resonance shows the reduction of the damping frequency
as the detuning approaches the positive locking range edge.

C. Bandwidth Enhancement

In a free-running laser, the damping fundamentally increases
as the square of the resonance frequency [67]. This limits the
laser bandwidth to g/ε, where ε is the gain compression factor.
In OIL, the resonance frequency and damping are no longer
bound by the free-running laser’s fundamental relationship be-
tween resonance frequency and damping. In fact, as the detuning
frequency is increased, the damping decreases as the resonance
frequency is enhanced and the opposite trend found in a soli-
tary laser. This allows for much larger freedom of design of the
frequency response. If the OIL response was governed solely
by this damped resonance, enhanced bandwidths would have
been observed in the original demonstrations of OIL resonance
frequency enhancement [64]. Rather, the OIL bandwidth is dom-
inated by another dynamic: the first-order pole frequency ωP ,
shown in (18). As shown in Fig. 3(d), (f), when the resonance

Fig. 6. Frequency response of an injection-locked DFB laser, showing fR =
45, 51, 61, 76, 96, 107 GHz. R= +14 dB. ∆f= −22, 3.5, 29, 54, 67 GHz.
Dotted curve is the free-running response. The slave is biased at 1.3 × Jth ,
which accounts for the low value of the first-order pole fP .

frequency is enhanced, the pole frequency is much less than the
resonance. This causes a 3-dB roll-off at a frequency much less
than the resonance, effectively limiting the 3-dB bandwidth to
∼ωP . For ∆ωR > ωR0 (which is true when bandwidth enhance-
ment over the free running is desired), an approximate value for
ωP can be derived:

ωP ≈
[
1 +

α

ωR
(γP + g∆N)

]
gS0 . (27)

The most important feature of the pole frequency is that it
is proportional to gS0 . This means, first, that a large differen-
tial gain is attractive for large bandwidths. Most importantly,
however, this means that the pole frequency is proportional to
the photon number. Aside from using negative detuning fre-
quencies, the pole frequency has been found to be enhanced by
increasing the slave laser current bias [51], [55]. This realization
has allowed bandwidth enhancements of the OIL laser to un-
precedented levels: an intrinsic bandwidth of 80 GHz has been
demonstrated [51]. Fig. 7 shows the intrinsic 3-dB bandwidths
across the locking range for three bias levels: J = 3×, 5×, and
10 × Jth . The free-running 3-dB frequencies are 10.5, 15, and
22.5 GHz, respectively. The maximum 3-dB bandwidths within
the locking range shown are 34, 49, and 76.5 GHz, respec-
tively, which would signify a bandwidth enhancement of ∼3.3
times the free-running value. The region of largest bandwidth
in Fig. 7(b), for example, corresponds to a first-order pole fre-
quency of only ∼15 GHz, shown in Fig. 3(f). The bandwidth of
>40 GHz is due to the ∼40-GHz resonance frequency pulling
up the high-frequency response before the pole drops below
3-dB (see ∆ωinj = −40 GHz case in Fig. 5). Hence, the pole
frequency need not be extremely high to result in greatly en-
hanced bandwidths. The significance of the abrupt drop in the
3-dB bandwidth in all three charts (e.g., from 70 to 20 GHz
around Rinj = 5 to 10 dB in (c)) is caused by the increase in the
resonance frequency and drop in the pole frequency such that the
resonance frequency is not able to pull the response up before the
pole frequency causes a 3-dB drop in the response, thus once
again dominating the 3-dB response (see ∆ωinj ≥ −20 GHz
cases in Fig. 5).
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Fig. 7. Contour plot of 3-dB bandwidths (in GHz) across the locking range for (a) J = 3 × Jth , (b) J = 5 × Jth , and (c) J = 10 × Jth . The maximum 3-dB
bandwidth increases with bias current. Note that (b) corresponds to the laser bias conditions in Fig. 3.

Fig. 8(a) shows experimental VCSEL frequency response
curves (dotted) for 1.3 × and 5 × Jth , plotted after de-
embedding the RC parasitic pole, which we found to be 16 GHz.
The slave laser’s bias current was changed while maintaining a
constant injection ratio (∼12–13 dB) and resonance frequency
(68 GHz). The RC pole was determined to be consistent by a fit
over a wide range of resonance frequencies. The free-running
output powers were −11 and −0.86 dBm, respectively. We ob-
served an increase in the intrinsic 3-dB frequency from 1.5 to
80 GHz. Theoretical curves (solid), based on a small-signal
analysis of the rate equations [55], match well to the exper-
imental curves. An additional theoretical frequency response
curve at 9 × Jth is given, showing the clear trend of bandwidth
enhancement with increasing slave laser bias current. With a bias
of ≥5 × Jth , the 3-dB bandwidth extends beyond the resonance
frequency, and we can achieve an intrinsic 3-dB bandwidth of 80
GHz. The extracted experimental pole frequencies are shown in
Fig. 8(b). The figure shows that a pole enhancement of only∼22
GHz (by biasing to 5 × Jth ) is needed to achieve the 80-GHz
3-dB bandwidth.

Of course, in practice, the laser modulation would ultimately
be limited by RC parasitics rather than the intrinsic bandwidths.
Note, however, that with the added benefit of being able to
customize the damping factor, the RC parasitics can be com-
pensated by decreasing the damping factor, thus using a slightly
raised resonance peak to compensate for the RC low-pass filter
response drop as an equalization technique.

D. Low-Frequency Gain

Strong injection locking has been experimentally shown to
provide low-frequency direct-modulation response well above
that of the free-running slave [20]. This gain can provide in-
creased link performance at moderate bandwidths by combining
the high optical power of the master laser (which may have poor
modulation properties) with the optimized modulation proper-
ties of a directly modulated slave laser. As shown in Fig. 5, the
RF gain typically occurs toward the negative detuning frequency
edge of the locking range, where the resonance frequency is very
low. Intuitively, when the laser is near the negative detuning
edge, the extremely low-resonance frequency contributes to in-

Fig. 8. (a) Experimental (dotted) and theoretical (solid) frequency responses of
optical injection-locked VCSEL at different dc bias currents. 3-dB frequencies
of 1.4 and 80 GHz for the experimental curves, respectively, are shown in
circles. (b) Extracted first-order pole frequencies (fP ), with corresponding 3-dB
frequencies (f3 dB ). Experimental free-running 3-dB frequencies (f3 dB ,FR )
also marked.

crease the dc gain. Here, we derive an analytical approximation
for the dc gain.

At dc, the direct modulation response in (16) reduces to:

H(0)

=
gzS0 (cos φ0−α sin φ0)

z2 (γN +gS0) +gzS0 (γP −2z cos φ0) (cos φ0 − α sin φ0)
.

(28)
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The peak dc response is known to occur near the negative
detuning frequency edge. Hence, for high injection ratios and a
slave that is biased relatively well-above threshold, the photon
number will be sufficiently larger such that we can approximate
γN � gS0 . This reduces the response to:

H(0) =
1
z

1
(γP /z) + [1/(cos φ0 − α sinφ0)] − 2 cos φ0

.

(29)
If we wish to find the maximum dc response for a given injec-

tion power, we maximize (29) across the detuning range (in this
case, φ0). Although z is a function of φ0 , the dominant change
occurs with the φ0 terms, so z is treated as quasi-static, then
solved later. This amounts to minimizing the two denominator
terms that contain φ0 . Although complicated to minimize ana-
lytically, it turns out that for any value of α > 0, the optimal φ0
is well-approximated by φopt ≈ −0.1π. By using the approxi-
mate value, the actual minimized function is matched with an
error of <1% for any α > 1.

To approximate S0 , in the strong injection regime (Rinj >
0 dB) we solve the steady-state photon number in (8). This
involves solving the cubic equation

0 = A3
0 − BA2

0 − A2
frA0 −

γN

g
B, (30)

where B ≡ 2κτP Ainj cos φopt ; τP = 1/γP = Qcav/ω0 is the
photon lifetime. Using (13) and since Qc > Qcav , B ≈
AinjQcav/Qc < Ainj . If the bias current is sufficiently above
threshold, the final term in (30) can be neglected, giving

A0 ≈ B

2
+

√
B2

4
+ Sfr =

δAinj

2


1 +

√
1 +

(
2Afr

δAinj

)2



(31)
where δ ≡ Qcav/Qc and the injection ratio is taken to be suf-
ficiently above 0 dB. Since cos φopt ≈ 0.95 and B2 > Sfr and
(31) approximates to

A0 ≈ δAinj +
Sfr

δAinj
. (32)

Hence, z approximates to

z ≈ γP

1.9
ρ

ρ + 1
(33)

where ρ ≡ Rinj(0.95Qcav/Qc)2 . The maximum low-frequency
response is thus approximately

HDC ,max ≈ HDC ,fr
ρ + 1

ρ/(1.8 + 0.59α) + 1
(34)

where Hdc,fr = 1/γP is the low-frequency response of the free-
running slave. Primarily, (34) can be used to argue that the
maximum RF gain is mainly a factor of α and Rinj . Hence,
to optimize the dc response, one would want a large linewidth
enhancement parameter α and injection ratio Rinj . A large α
is contrary to the design of a typical direct-modulated laser,
although in this case it is desirable to obtain larger RF gain.
Fig. 9 shows the numerical maximum low-frequency gain versus
injection ratio, for different α values. Although increasing α also
increases the low-frequency gain, there are diminishing returns.

Fig. 9. Maximum low-frequency gain versus injection ratio, for various α.

One can see that the low-frequency gain can surpass the free-
running laser’s differential quantum efficiency.

As shown in Fig. 3(d), the high-gain, low-frequency response
occurs away from the enhanced resonance frequency regime.
Nevertheless, the maximum low-frequency gain can have signif-
icant bandwidth, as shown in Fig. 5, which shows a bandwidth of
>20 GHz at the maximum low-frequency gain point. Since φopt
is close to 0, by observing (9), the detuning frequency at max-
imum low-frequency response will be at a negative frequency
detuning for α > 0.32, a valid condition for most semiconductor
lasers.

E. Chirp

Chirp has also been studied in injection-locked lasers by sev-
eral other authors [68], [69]. Piazzolla et al. [68] present a
comprehensive small-signal analysis on the subject but does not
fully consider the implications of strong injection locking. Rel-
atively strong injection locking was explored by Yabre [69], but
the study was mostly numerical. Here, we attempt to present
a comprehensive analytical study of chirp in strong injection
conditions.

The figure-of-merit for chirp is the magnitude of frequency
deviation for a given power deviation or chirp-to-power ratio
(CPR).

CPROIL =
∣∣∣∣∆ω

∆S

∣∣∣∣ =
∣∣∣∣jω ∆φ

∆S

∣∣∣∣ =
α

2S0

∣∣∣∣jω jω + ωZC

jω + ωPC

∣∣∣∣ (35)

ωZC = mSS−
mφS mSN

mφN
=z

(
cos φ0 +

1
α

sinφ0

)
+ ωZC0 ,

(36)

and

ωPC = mφφ − mSφmφN

mSS
= z (cos φ0 − α sin φ0) . (37)

The last term in (36) is defined as

ωZC0 ≡ εS0g(N0 − Ntr) (38)

and is derived by the addition of gain compression into the rate
equations, where we modeled the net stimulated gain as

g → g

1 + εS0
(39)
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Fig. 10. CPR versus modulation frequency for various injection ratios, at a
fixed phase of φ0 = 0.

and we assume εS0 � 1. Here, gain compression is needed to
correctly model the dc chirp. While this dominates the dc chirp
of a free-running laser, this term typically is in the range of
100 MHz and is only significant for low injection ratios.

The free-running laser can also be analyzed by the injec-
tion locking equations. For the free-running laser, there is no
injected light. Therefore, z = 0, making ωPC = 0. The free-
running CPR becomes

CPRfr =
α

2S0
|jω + ωZC0 | . (40)

This is consistent with the large-signal CPR model developed
in [70] and the small-signal model in [67], [71]. Below ωZC0 ,
the CPR is constant and proportional to αε. Slow changes in the
photon number causes changes in the carrier number through
gain compression. This, in turn, causes frequency shifts via the
linewidth enhancement parameter.

Because of the existence of the nonzero pole, the dc chirp
vanishes for injection-locked lasers. Essentially, the slave laser
frequency attempts to stay locked to the master frequency. The
frequency shifts due to α will be suppressed by changes in the
phase difference between master and slave. As the modulation
frequency increases, the attempted frequency deviations become
larger and the restoring force cannot keep up, leading to a gradual
increase in chirp.

When the injection ratio is decreased, the master power that
is used to lock the slave becomes weaker, and the CPR becomes
closer to the free-running case. This is shown in Fig. 10, where
the phase is set to 0 and the injection ratio is varied. At φ0 = 0,
at moderately high injection ratios, the pole and zero cancel each
other, leaving a ω dependence on CPR. Note that the increased
photon number for negative detunings allows the very high-
frequency CPR to fall below the free-running value.

Fig. 11 shows the value of ωPC and ωZC with respect to
phase, assuming sufficiently strong injection (z > ωZC0). The
CPR spectrum is also shown across the detuning range in Fig. 12.
Note that the reduction of the zero frequency ωZC by positive
detuning also reduces the low-frequency CPR. By observing
(35) for frequencies below ωPC (which corresponds to the useful
modulation efficiency range), the CPR increases with α, as is the

Fig. 11. Evolution of the CPR pole and zero frequency across the detuning
range. The x-axis is linear with respect to phase with select detuning frequency
values shown. Note that the zero is cancelled when ∆ωin j = 0 Hz.

Fig. 12. CPR versus modulation frequency for various detuning frequencies
across the locking range, at a fixed injection ratio Rin j = 4 dB.

case with free-running laser. However, the CPR only increases
for relatively small α and saturates for any value of α > 3.

A special case is worth noting. When the detuning frequency
is set to ∆ωinj ≈ 0 (in actuality, slightly positive detuning), then
ωZC = 0 and the injection-locked CPR is

CPROIL(∆ωinj = 0) ≈ α

2S0

∣∣∣∣ ω2

jω + z
√

1 + α2

∣∣∣∣ . (41)

This corresponds to the minimum low-frequency CPR for
any given detuning. This is shown in Fig. 12, for ∆ωinj =
12.24 GHz. Detuning the master in either direction results in a
nonzero ωZC and an increase in the low-frequency chirp. The
reasoning here is that the free-running dc chirp can be canceled
by additional OIL dynamics.

F. Relative Intensity Noise

Intensity noise in free-running lasers is caused by random
carrier recombination and generation events [72]. In OIL lasers,
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the intensity and phase fluctuations of the injected light also con-
tribute to the system’s noise and cannot be ignored [12], [73].
OIL laser RIN has been studied using quantum mechanical
approaches [74], [75] but only for reflection-style injection.
Treatments using the phenomenological rate equations also ex-
ist in analytic [12], [73] and numerical [9]–[11] form, but do
not include additional noise from reflected zero-point fluctua-
tions at the laser facets that can significantly impact the output
noise [76]. This difference between output and cavity noises
can also be explained by partition noise derived from the output
mirror reflectivity [72]. Here, we adopt an analytic approach
that uses the phenomenological rate equations and takes the
effect of zero-point fluctuations into account. Similar to the
treatment in [12], we introduce Langevin noise sources to the
rate equations, assuming that these sources are small enough
that a small-signal treatment is valid.

Because spontaneous emission is negligible compared to
other processes represented in the rate equations, we can ignore
it in modulation response calculations without compromising
accuracy. However, it is necessary to include the spontaneous
emission rate in order to accurately model the Langevin noise
spectral densities. We therefore introduce the terms +R′

sp in (1)
and −(Rsp + Rnr) in (3), defining both as in [72]. We obtain
the matrix equation as


mSS + jω mSφ mSN

mφS mφφ + jω mφN

mNS 0 mNN + jω







dS

dφ

dN




=




mSi

mφi

0


 dSinj +




mSφ

mφφ

0


 dφinj +




FS

Fφ

FN


 (42)

where mSi = z cos(φ0)S0/Sinj and mφi = −z sin(φ0)/2
SinjdS, dφ, dN, dSinj , and dφinj are the frequency-domain pho-
ton, phase, carrier, injected photon, and injected phase fluctu-
ations, respectively. dSinj and dφinj contain the noise fluctua-
tions added by the master laser. The RIN contributions from the
master can be considered small-signal, broad-spectrum “modu-
lation” of the injected master light. Hence, the master laser RIN
contributions are very similar to the master modulation formu-
lation found in [56]. FS , Fφ , and FN are the frequency-domain
photon, phase, and carrier Langevin noise sources, respectively.
Langevin noises are white (their spectral densities are indepen-
dent of frequency), being stationary (so the Wiener–Khinchin
theorem applies) and memoryless (so time-domain correlations
are delta functions) processes [72]. Denoting the spectral den-
sity of the correlation between noises A and B as 〈AB〉ω (where
the subscript indicates any dependence on frequency), the pho-
ton noise spectral density from (42) and the Wiener–Khinchin
theorem is

〈dSdS〉ω = |HSSi(ω)|2 〈dSinjdSinj〉ω
+ |HSφi(ω)|2 〈dφinjdφinj〉ω
+ |HSS (ω)|2 〈FS FS 〉 + |HSφ(ω)|2 〈FφFφ〉

+ |HSN (ω)|2 〈FN FN 〉

Fig. 13. Shot noise model diagram for the OIL laser system. Arrows are
labeled by rate of particle flow within the laser and by power flow outside. RM L

is the rate of injection, defined as RM L = 2κ
√

Sin jS0 cos φ0 . R12 and R21

are the rates of stimulated emission and absorption, respectively. Pin j is the
injected power and P is the slave laser output power.

+ 2Re
{
HSSi(ω)HSφi(ω)∗ 〈dSinjdφinj〉ω

}
+ 2Re {HSS (ω) HSN (ω)∗ 〈FS FN 〉} (43)

where

HSS (ω) = (mφφ + jω) (mNN + jω)/D (ω)

HSφ(ω) = −mSφ (mNN + jω)/D(ω)

HSN (ω) = [mSφmφN − mSN (mφφ + jω)]/D(ω)

HSSi(ω) = (mSi (mφφ +jω)−mφimSφ)(mNN +jω)/D(ω)

HSφi(ω) = mSφ (mNN + jω) jω/D(ω) (44)

and D(ω) is the determinant of the coefficient matrix on the left
side of (42). The output power spectral density is

〈dPdP 〉ω = (hνγm )2 〈dSdS〉ω +2hνγm Re {HSS (ω) 〈FS Fo〉}
+ 〈FoFo〉 , (45)

where Fo is the Langevin noise term associated with the output
reservoir, γm is the rate of photon emission via the output facet,
h is Planck’s constant, and ν is the optical frequency of the slave
laser output.

Fig. 13 gives the diagram for the shot noise model, first ad-
vanced by McCumber [77] and Lax [78], extended to the OIL
laser context. In this model, the spectral density of a Langevin
noise source’s autocorrelation is simply the sum of all average
rates of particle flow into and out of its reservoir. The spectral
density of the cross-correlation between two noise sources is
simply the negative of the sum of all average rates of particle
flow between their reservoirs. Quantum noise due to zero-point
fluctuations is accounted for via the external, injection, and out-
put reservoirs and their associated noise sources.

We develop the theory for a slave laser with facets of equal
power reflectivity r. Light is injected through one facet and
the output power collected from the other facet. This model
may be adapted to the case where power is injected through the
output facet (via a circulator) but the contribution of reflected
master laser light must then be taken into account [74]. The
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slave laser is a DFB laser with typical parameters, obtained
from [72]. Previous works have demonstrated the impact of
injected noise on RIN [12], [73]. Here, we assume that the master
laser operates at the quantum noise limit over the frequency
range of interest. The intensity of the injected light is controlled
by an attenuator between the master and the slave laser. Both
master laser and attenuator are abstracted away by the external
reservoir in Fig. 13. From Fig. 13 and the principles of the shot
noise model, we calculate the spectral densities to be

〈FS FS 〉 = 2R′
sp(S0 + 1) + 2RML

〈FN FN 〉 = 2R′
spS0 + 2Rnr + 2Rsp

〈FS FN 〉 = −(2R′
spS0 − GS0 + R′

sp)

〈FoFo〉 = hνP0

〈FS Fo〉 = −P0

〈FφFφ〉 = 〈FS FS 〉/4S2
0

〈FextFext〉 = hνMLPinj

[
1 + (1 − r)−1

]
〈FinjFinj〉 = hνMLPinj

〈FextFinj〉 = −hνMLPinj

〈dSinjdSinj〉ω = (Sinj/Pinj)
2 · {(1 − r)2 〈FextFext〉

+2 (1 − r) 〈FextFinj〉 + 〈FinjFinj〉}
〈dφinjdφinj〉ω = (2 − r)hνML/4Pinj. (46)

All values in (46) are steady-state values. All other permuta-
tions of noise spectral densities that were not listed equate to 0.
G is the total stimulated emission gain of the slave laser, where
G = g(N0 − Ntr). P0 denotes the steady-state slave laser out-
put power. Fext and Finj are Langevin noise terms associated
with the external and injection reservoirs, respectively. +R′

sp ,
Rnr , and Rsp are the rates of spontaneous emission into the
mode, nonradiative recombination, and total spontaneous emis-
sion, respectively. νML is the optical frequency of the injected
light. Since we are considering the case of stable injection lock-
ing, νML = ν. Combining equations (43)–(46), the single-sided
noise spectrum relative intensity (RIN) may be obtained as

RIN(ω) = 2〈dPdP 〉ω /P 2
0 . (47)

Fig. 14 shows the change in RIN as the external injection
ratio is varied with a fixed detuning frequency of −5 GHz. In
agreement with previous experiments [6], [20], [79], the OIL
laser RIN characteristics in Fig. 14 depart from that of the slave
laser and approach that of the quieter master laser as the injec-
tion ratio increases. In addition, the frequency of the RIN peak
is increased by the stronger injection. As injection power is in-
creased, the RIN at the peak decreases due to increased damping
of the resonance. This was experimentally verified by Jin and
Chuang [79]. Finally, we see that the conclusion in [12] that
low-frequency OIL laser RIN is approximately invariant with
injection strength holds only for the low levels of injection used
in that study. Fig. 14 shows clearly that RIN at low frequencies
can be suppressed significantly with high levels of injection.

Fig. 14. RIN of OIL laser at a fixed detuning frequency of−5 GHz and various
external injection ratios (as labeled). Dotted-line RIN plots of the free-running
slave laser (FR SL) and master laser (ML) are included. The slave laser is biased
at ten times its threshold current (4.5 mW).

Fig. 15. Same conditions as Fig. 14 except the external injection ratio is fixed
at 10 dB and detuning frequency varied (labeled).

Fig. 15 shows the behavior of RIN as the detuning frequency
is varied for a fixed external injection ratio. As experimentally
shown in [20], the RIN peak increases as one approaches the
positive detuning edge (the phase difference between slave and
injected light approaches −π/2). RIN generally decreases as
detuning frequency decreases toward the point where the phase
difference is 0 (maximum output power). That minimum RIN
at a given injection level is achieved at maximum output power
has been observed at low injection levels [73] and for the case
where light is injected through the output facet [74]. We show
here that this is also true for ultra-high optical injection into a
nonoutput facet.

For high RF frequencies, the RIN approaches the quantum
shot noise limit: RIN = 2hν/P0 . For higher injection ratios
and negative detuning, the shot noise is reduced, as shown in
Figs. 14 and 15, due to the increasing output power from the
slave cavity. It is interesting to note that it may be possible
to reduce the quantum limit below both shot noise limits of
the master and slave, since the output power of the slave, at
negative detunings, can exceed the power of the solitary master
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and slave (but not exceed the sum of master and slave power).
This assumes, however, lossless coupling, in order to keep the
locked power above both solitary master and slave lasers.

For low RF frequencies (ω � ωR), the slave laser’s inter-
nal photon fluctuation is dominated by the dc response of the
autocorrelation carrier noise term:

〈dSdS〉ω ≈ |HSN (ω)|2 〈FN FN 〉 (48)

which results in an approximate low-frequency RIN of

RIN(ω = 0) =
2hν

P0

[
2γm R′

sp |HSN (ω = 0)|2 + 1
]
. (49)

The second term implies that the RIN, as usual, cannot go be-
low the standard quantum limit (unless squeezed). Interestingly,
the term HSN is the small-signal response in (16), evaluated at
dc. This is proportional to the low-frequency RF gain as dis-
cussed in Section IV-D.

Note that while high injection and low detuning appear to
favor low RIN, both these conditions also favor high output
power levels, which may be unfeasible for transmission over
optical fiber due to effects like stimulated Brouillon scattering.
Although we investigate only intensity noise here, our model
lends itself just as effectively to a study of frequency noise in
an OIL laser system.

A few general trends of RIN in OIL lasers are noted. In many
ways, the RIN follows that of a free-running laser. For example,
the RIN peak follows the peak of the relaxation oscillation, both
in frequency and amplitude. This is evident by observing that
almost all terms in (45), save the output partition noise, share
the same denominator (read: poles) as the small-signal response
for direct modulation of the OIL laser found in (16). Hence,
an increase in the peak direct modulation amplitude by positive
detuning, for example, leads to a corresponding increase in the
RIN peak amplitude. It is important to reiterate that the RIN peak
frequency and amplitude can be modified by both detuning and
injection ratio. In OIL, the relaxation oscillation frequency can
increase, thus pushing the RIN peak to higher frequencies. This
has been shown to be useful in reducing noise for modulation
frequencies near the free-running resonance [20].

V. CONCLUSION

The classic differential equations for injection-locked lasers
are used to describe many of the enhanced laser characteristics
that OIL provides. Resonance frequency, damping, 3-dB band-
width, chirp, and RIN are shown to be improved, depending on
the locking parameters. We discuss the physical interpretation
of the enhancements over the free-running case. We also de-
lineate specific design parameters and locking conditions that
can be used to optimize the injection-locked laser for different
applications.
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